MATH 509
LOGIC AND FOUNDATIONS OF MATHEMATICS FOR TEACHERS
Nicholls State University, Fall 2006

Instructor: Dr. Brian Heck
Office: 106-E Peltier
Phone: 448-4383
Email: brian.heck@nicholls.edu
Webpage: blackboard.nicholls.edu

My office hours are 9:30-11:45 Mon, Wed, 9:00-12:00 Tue, Thurs, and 5:00-6:00pm Wed. Please contact me (phone, email, or in person) during these times if you have any questions. If you need assistance at a different time, contact me and we’ll work something out.

Prerequisite: Math 265 and 358.

Course Description (catalog): Cornerstone course normally taken in first semester of graduate study. Developing and evaluating arguments and proofs, the use of various types of reasoning, methods of proof, making and investigating conjectures.

Course Description (instructor): This course is primarily designed for secondary and post-secondary teachers. The ability to make coherent and logical arguments is necessary for effective teaching at all levels. Understanding students’ logical errors and how to avoid them is also essential.

We will begin by covering the basics of logic and theorem proving. This will be followed by a careful analysis of the history of the axiomatic method. From Euclid and Archimedes to Peano and Hilbert, we look at successes and failures in attempts to axiomatize various fields of mathematics. In 1931, however, 25-year old Austrian Kurt Gödel published his epoch-making paper On Formally Undecidable Propositions of Principia Mathematica and Related Systems. The punch line of this paper was that in any field of mathematics and under any set of axioms there were statements that were undecidable, in other words neither provable nor unprovable. Hence the axiomatic method was doomed to failure. We will examine this amazing paper by reading and discussing Gödel’s Proof by Nagel, Newman, and Hofstadter.

A few words need to be said about the Internet aspect of this course. All assignments, notes, announcements, etc will be posted on Blackboard. All students enrolled in an Internet course should have basic computer skills (such word processing,
e-mail, navigating the Internet, etc). Some tips on preparing yourself for an online course are available at www.nicholls.edu/distance/requirements.htm. As an online student, you will be self-paced. This therefore requires self-discipline and self-motivation. The problem sets need to be turned in on time. It is the responsibility of the student to notify the instructor of technical and/or personal problems that may interfere with online participation. All students must have an e-mail account that they check regularly. E-mail will be our primary means of communication. If you need more personalized assistance, I invite you to visit my office during office hours. Just like a typical class, instances of academic dishonesty, such as plagiarism, will not be tolerated.

Course Objectives: At the completion of the semester, a student will be able to:

- explain the historical developments of logic and set theory
- explain the axiomatic method, its history, and its goals
- form sound arguments using the notions of set theory, functions, equivalence relations, and logic
- prove theorems in many fields of mathematics using the various methods of proof including direct, indirect, and mathematical induction,
- evaluate an argument and/or proof for its logical validity,
- use deductive reasoning to form conjectures
- demonstrate an understanding of the life and mathematics of Kurt Gödel

Grading Policy: Your course grade will be composed of a problem set grade (50%), an in-class midterm exam grade (25%), and a take-home final exam grade (25%).

Disability: If you have a documented disability that requires assistance, you will need to register with the Office of Disability Services for coordination of your academic accommodations. The Office of Disability Services is located in Peltier Hall, Room 100-A. The phone number is (985) 448-4430 (TDD 449-7002).