INTRODUCTION

This set of notes is designed for a graduate level number theory course at Nicholls State University entitled “Number-Theoretic and Discrete Structures”. They are suitable for a one semester course. The student should have familiarity with logic, set theory, and have theorem-proving experience. A course in abstract algebra, while not essential, would also be helpful.

We begin by studying the building blocks of the real number system, the prime numbers. We will also study the integers and their relationship with the rationals, congruences, and Carl Gauss’ quadratic reciprocity. These topics then lead us into quadratic number fields.

Finally, as time allows, we will cover various discrete structures such as graphs, lattices, and/or recursive relations. In particular, we may find the time to relate certain graphs (circulant graphs) to the study of algebraic number theory. I hope you will enjoy this semester as much as I know I will.
TABLE OF CONTENTS

Introduction

I  Prime Numbers
   Section 1: The Building Blocks of Numbers
   Section 2: Divisibility and Unique Factorization
   Section 3: Types of Primes

II  Congruences
   Section 1: Linear Congruences
   Section 2: Quadratic Reciprocity
   Section 3: Cryptography

III Algebraic Equations
   Section 1: Diophantine Equations
   Section 2: Algebraic Numbers
   Section 3: Gaussian Integers
   Section 4: Algebraic Number Theory

IV  Recursive Relations

V  Graph Theory
   Section 1: Introduction to Graphs
   Section 2: Circulant Graphs
   Section 3: Redei-Reichardt Theorem